
6! 

where 6f is the exact value of the error; 6f is the value known with an error. The results 
demonstrated show that the overdetermination of the level of error results in more appre- 
ciable errors in the solution of the inverse heat conduction problem in the metrlcs C o in 
comparison with the underdetermination. In comparing the accuracy 6 u in the metrics L2, 
overdetermination and underdetermination in 6f results in approximately equal results. 

NOTATION 

T, temperature; C, volumetric heat capacity;k, thermal conductivity; f, additional 
temperature measurement; q, heat flux density to the internal body surface; u, heat'flux 
density to the external surface; 6f, measurement error; ~max, duration of process; b, body 
thickness. 
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DEGREE OF INSTABILITY OFNUMERICAL SOLUTIONS OF INVERSE 

HEAT-CONDUCTION PROBLEMS AND ERROR OF EXPERIMENTAL DATA 

N. I. Batura UDC 536.6 

A method is proposed for estimating t.he error of the results obtained in ~ana- 
lyzing experimentaldata using the solutions ofnonsteady boundary inverse 
heat-conduction problems. 

An important aspect of the applied use of the solution of inverse heat-conduction prob- 
lems is the question of determining the error of the results obtained [1-3]. In the present 
work, a solution of this problem is proposed for a sufficiently broad class of nonsteady 
boundary inverse;heat-conduction problems in a linear formulation, expressed as an integral 
equation 

J" q (t) 6 (-~ - -  t) a t  = T6 ('0 - -  r . ,  ( 1 )  
0 

where T6(~) is th~ temperature dependence, measured with an error0f 6T; To is the initial 
temperature; G(T) = (8/~)[U(T)]. 

Solution of Eq. (i) by approximating the desired heat flux as a piecewise,constant 
function (direct algebraic method [i]) is expressed by the following recurrence relation 

l--! 

qi = Gtl . . . . .  (T, To- -  ~i=, qjG,_i+,), i 1, 2 . . . .  , m. (2) 

Here T i = T6(xi) , ~i = iA~; qi is the heat flux in the i-th time interval (~i-I, xi). 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 3, pp. 446-450, March, 
1989. Original article submitted Apri ! 18, 1988. 
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Now Eq. (2) is transformed using a discrete analog of Eq. (i) in the form 

Combining Eqs. 
the form 

i -- l  

q jGi - j  = T i_ ,  - -  To. ( 3 )  
i = l  

(2) and (3) allows the solution of the given problem to be written in 

| i--I 

ql . . . .  G1 (T~--7"i_ 0 + ~  qi~i-i, i:= 1, 2 . . . . .  m; 
i=' (4) 

O l -  Gi~ 1 
r = - - ,  i =  1, 2 . . . .  , m - - 1 .  

G, 

E q u a t i o n  (4)  d e t e r m i n e s  t h e  dependence  o f  t h e  e r r o r s  o f  t h e  s o l u t i o n s  q i  o b t a i n e d  on 
the error of the temperature measurements 6T i 

| l--I 

6qi = ~ ( 6 T i -  6ri_~) -}- ' ~  6qjq~i_j. (5 )  
i = :  

Introducing the greatest deviation of the given dependences from the true values as a 
measure of their error 

6q = sup] 6qi [; 6T = sup [6T~I, 
i i ( 6 )  

the first term in Eq. (5) may be written in the following form, in the chosen notation 

6T 
6q* -= k - -  (7 )  

Gt 

The v a l u e  o f  t h e  c o n s t a n t  k i s  d e t e r m i n e d  by t h e  c h a r a c t e r  o f  t h e  d i s t r i b u t i o n  o f  t h e  e r r o r  
6T. Under t h e  a s s u m p t i o n  t h a t  a l l  t h e  6T i a r e  i n d e p e n d e n t  n o r m a l l y  d i s t r i b u t e d  random 
q u a n t i t i e s ,  k = ~ .  

Whereas t h e  l e v e l  o f  e r r o r  d e t e r m i n e d  by t h e  f i r s t  t e rm  in  Eq. (5 )  i s  i n d e p e n d e n t  o f  
t h e  number o f  t h e  t ime  s t e p  i ,  t h i s  dependence  becomes s i g n i f i c a n t  in  t h e  second  t e r m  

i--I 

6qi '=~'--  6 q ; ' % _ j ,  i = 2 ,  3 . . . . .  m.  ( 8 )  

f=1 

As shown by Eq. ( 8 ) ,  any p e r t u r b a t i o n  - f o r  example ,  6q1"* - may grow e i t h e r  weaker  o r  
stronger in the course of calculation. 

As a quantitative characteristic of this feature of the computational process, the 
parameter 8 may be introduced; below, it is called the degree of instability of numerical 
solution of the inverse heat-conduction problem 

6q = ~6q*. (9 )  

The parameter ~ introduced in this way shows to what extent the level of error 6q* de- 
fined according to Eq. (7) is intensified in the course of numerical realization of the al- 
gorithm. 

Using Eq. (8), a sequence of obvious inequalities may be obtained 

i --I  i - - I  

] 6q;*[ ~ ~ [ 6qi [] q~i-J [ ~ 6q~" '~  I t~i-~ 1, 6q~ -- sup I 6q~" [. ( lO)  
i j=| i=i 

Analysis of Eq. (i0) shows that if 

l--I 

n = ~ I ~ j J <  1 
/ = |  

any perturbation - in particular, 6ql** - is not intensified in the corresponding calcula- 
tions, i . e . ,  t h e  f o l l o w i n g  s equence  o f  i n e q u a l i t i e s  h o l d s  

(n) 
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Fig. i. Error of nonregularized solutions of the inverse 
heat-conduction problems; a) stable solution; aFo = aAx/ 
x 2 = 0.5; 6T = 2oT;~ z = 0.4; i) numerical calculation; 2) 
estimate from Eq. (7); b) unstable solution; AFo = 0.2; 
c~ z = -1.5; i) numerical calculation; 2) estimate according 
to Eqs. (9) and (17). 

Fig. 2. Influence of regularization on the error of solu- 
tion of the inverse heat-conduction problem (~Fo = 0.i; 
~l = -5.7; ~ ~ 4.106); i) numerical calculation; 2) esti- 
mate from Eq. (20); 3) from Eq. (7). 

'" 8 "" ~ . . .  ( l Z )  

Taking account of the form of the pulsed characteristics of the given thermal process- 
es [i], the condition in Eq. (ii) may be written in the form 

where G s = supG i. 
i 

(13) 

It is readily evident that, in the limiting case (G m + ~, m + ~), the condition in Eq. 
(13) reduces to the well-known stability condition of the computational process, which takes 
the form G 2 = GI in the present notation [i]. 

It is clear from these ~elatlons that, if Eq. (13) holds, then 8 ~ i, i.e., the error 
of the solutions' of the inverse heat-conductlon problems obtained here may be estimated from 
Eq. (7). Numerical experiments show that, instead of Eq. (13), a weaker stability condition 
of the given algorithm may be used 

I ~ , i ~  1, (14) 

which is practically equivalent to the condition AY 0 ~ 0.31 for the most-studied case of a 
semiinfinite wall [4]. Otherwise, i.e., if 

I ~ , [ > l ,  

t h e  n u m e r i c a l  a l g o r i t h m  o b t a i n e d  may be a s s i g n e d  t o  t h e  u n s t a b l e  c a t e g o r y ,  
ly broad class of practical problems determined by the condition 

( 1 5 . )  

For  a s u f f i c i e n t -  

i = 2 ,  3 . . . . .  m - - I ,  

the degree of instability of the numerical solutions may be estimated as follows 

(.16) 

3-'14 



"" [%1 ~- (17) 

Characteristic results of the numerical experiment are shown in Fig. i. It is evident 
from these data that the use of the direct algebraic method when Eq. (15) holds is irration- 
al from the viewpoint of the error of the results obtained. An effective method of solution 
of such problems is the Tikhonov regularization method [i, 3], which consists in minimiza- 
tion of the following regularizing functional 

= T o q, 2 
�9 (q) ]]Aq-- ~ I I L + ~ I I  - -q~ !L , ,  ( 1 8 )  

where Aq is the algorithm for solution of the corresponding direct problem; q, is the trial 
solution; ~ is the regularization parameter. 

To elucidate the question of the error solutions obtained by the regularization method 
[1-3], which has not been adequately studied as yet, a numerical experiment is undertaken. 
It indicates the possibility of significant simplification of the given problem by intro- 
ducing the dimensionless regularization parameter in the form 

r = (GlAd) ~ ( i 9 )  

I n  t h i s  c a s e ,  t h e  e r r o r  o f  t h e  r e g u l a r i z e d  s o l u t i o n s  o b t a i n e d  6q0 may b e  e s t i m a t e d  when 0 
r ~ 1 / 6  a s  f o l l o w s  

6q 6qo 
i q- r~ z ' ( 2 0 )  

where 6q0 is the error of the unregularized solution, i.e., the solution obtained when r = 
0. Note that Eq. (20) is obtained by generalizing the calculation results for the case when 
numerical realization of the given algorithm is not associated with marked influence of the 
rounding error in the calculations on the error of the results obtained. This is easily es- 
tablished from the coincidence of the initial dependence of T6 and the inverse dependence 
obtained by solution of the direct problem with respect to the solution obtained when r = 0, 
i.e., by verifying the obvious equation 

Aq~=o = T6. (21) 

In the range of variation of the dimensionless regularization parameter 

l 
- - ~ r ~ . ~ l  (22) 

the error of the solutions obtained changes little and may be estimated from Eq. (7). This 
result indicates that, in the range in Eqo (22), there is a quasi-optimal value of r in 
weakened form [3]. 

The results of numerical experiment confirming the validity of the above relations are 
shown in Fig. 2 for the case of a semiinfinite wall (AFo = 0.i), which corresponds to $ ~ 
4"106 when m = i0. 

Thus, the use of a quasi-optimal regularization parameter in weakened form is essential- 
ly based on the idea that the desired solution does not contain an oscillatory component 
with a characteristic time T o = 2A~ and an amplitude that increases over time. 

Decrease in the error below the level in Eq. (7), which is possible when r > i, requires 
the use of more complete a priori information on the desired solution. 

NOTATION 

T, time; T(T), temperature; q(~), heat flux; 6T, 6q, errors in determining the tempera- 
ture and heat flux; G(T), Green's function; U(T), solution of direct heat-conduction prob- 
lem with q(~) = I; A~, time step; x, depth of thermocouple; a, thermal diffusivity; 6, de- 
gree of instability of numerical solution of inverse heat-conduction problem; r, dimension- 
less regularization parameter; ~, defi~ed in Eq. (4). Indices: 0, initial value; i, j = 
i, 2, ..., m, number of time interval. 
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A NONLINF~ REGULARIZING ALGORITHM FOR SOLVING ONE CLASS 

OF INVERSE PROBLEMS OF HEAT CONDUCTION 

Yu. E. Voskoboinikov and A. V. Bronnikov UDC 519.2 

A nonlinear regularizing algorithm is proposed for solving ill-conditioned sys- 
tems of equations, which takes account of typical a ~riori information about 
the solution sought. 

Numerous formulations of the inverse heat conduction problem [i] (specifically, a pa- 
rametrized identification of heat conduction proCeSseS) lead to the system of linear alge- 
braic equations of the form 

K~ = f ( 1 )  

As a rule, system (i) is ill-conditioned or degenerate and in order to construct a stable 
(regularized) solution, different methods of regularization of the solution are used [2, 
3]. In this work, a method is presented for constructing a regularized solution on the 
basis of the singular expansion of the matrix K, taking into account preliminary informa- 
tion that is typical for the considered problem. 

Linear Regularizing Algorithm. We assume for definiteness that the matrix K is of 
order Nf x N~, where ~ and f are vectors of appropriate dimensionality. The representation 
[4] K = UAV T is called a Singular expansion of the matrix K~ in Which U and V are orthogonal 
matrices of order Nf • Nf, N~• N~, Where T is the transpose sign, A is a matrix of order 
Nf • ~with elements 

{A}~,j= to, iv~j, 
The values h i ~ 0, i = i, 2, ..., N~, are called singular numbers of the matrix K. Suppose 
that a) Nj e N~; b) singular numberS are ordered: Xi ~ ~2 ~ ... ~ XN �9 ~ 0; c) instead of 
the exact right-hand side of f, the vector f = f + N, where ~ is a random vector with zero 
mean, reflecting errors in specifying the right-hand side of Eq, (i), is specified. 

A solution @~ stable With respect to noise D and to the errors of the computational 
process realizing a singular expansion can be represented in the following form 

(2) 

where x~ is an N~-dimensional vector; x~(j) is its j projection; y(j) is the j-projection 
of the vector y = uTf; ~ is a parameter of regulariZation; m(k) is a nonincreasing positive 
function (for example, m(k) = X-0, 8 e i). It can be shown that for an appropriate choice 
of ~ the solution ~ is regularized, i.e,, when the errors tend to zero, ~ converges to 
the exact pseudosolution of system (i). By not considering the choice of ~, we only note 
that existing algorithms for estimating an optimal (in the sense of a root-mean-square 
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